`tan(2x)=2sinxcosxsec2x`
To verify this identity, simplify the right side of the equation until it matches the left side.
(1) This verification will include the Double Angle formula:
`sin(2x)=2sinxcosx`
(2) This verification will include the Reciprocal Identity:
`sec(x)=1/cos(x)`
(3) The verification will include the Quotient Identity:
`tan(x)=sin(x)/cos(x)`
Here are the steps.
`tan(2x)=2sin(x)cos(x)sec(2x)`
`tan(2x)=sin(2x)sec(2x)` [Using the Double Angle Formula]
`tan(2x)=sin(2x)*1/cos(2x)` [Using the Reciprocal Identity]
`tan(2x)=sin(2x)/cos(2x)`
`tan(2x)=tan(2x)` ...
`tan(2x)=2sinxcosxsec2x`
To verify this identity, simplify the right side of the equation until it matches the left side.
(1) This verification will include the Double Angle formula:
`sin(2x)=2sinxcosx`
(2) This verification will include the Reciprocal Identity:
`sec(x)=1/cos(x)`
(3) The verification will include the Quotient Identity:
`tan(x)=sin(x)/cos(x)`
Here are the steps.
`tan(2x)=2sin(x)cos(x)sec(2x)`
`tan(2x)=sin(2x)sec(2x)` [Using the Double Angle Formula]
`tan(2x)=sin(2x)*1/cos(2x)` [Using the Reciprocal Identity]
`tan(2x)=sin(2x)/cos(2x)`
`tan(2x)=tan(2x)` [Using the Quotient Identity]
No comments:
Post a Comment