`int_(pi/4)^(pi/2)cot^3(x)`
Let's evaluate the indefinite integral by rewriting the integrand as,
`intcot^3(x)=intcot(x)cot^2(x)dx`
Now use the identity:`cot^2(x)=csc^2(x)-1`
`=intcot(x)(csc^2(x)-1)dx`
`=int(cot(x)csc^2(x)-cot(x))dx`
`=intcot(x)csc^2(x)dx-intcot(x)dx`
Now let's evaluate `intcot(x)csc^2(x)dx` by integral substitution,
Let `u=cot(x)`
`=>du=-csc^2(x)dx`
`intcot(x)csc^2(x)dx=intu(-du)`
`=-intudu`
`=-u^2/2`
substitute back `u=cot(x)`
`=-1/2cot^2(x)`
Use the common integral `intcot(x)dx=ln|sin(x)|`
`:.intcot^3(x)dx=-1/2cot^2(x)-ln|sin(x)|+C` , C is a constant
Now let' evaluate the definite integral,
`int_(pi/4)^(pi/2)cot^3(x)dx=[-1/2cot^2(x)-ln|sin(x)|}_(pi/4)^(pi/2)`
`=[-1/2cot^2(pi/2)-ln|sin(pi/2)|]-[-1/2cot^2(pi/4)-ln|sin(pi/4)|]`
`=[-1/2*0-ln(1)]-[-1/2(1)^2-ln(1/sqrt(2))]`
`=[0]+1/2+ln(1/sqrt(2))`
`=1/2+ln(2^(-1/2))`
`=1/2-1/2ln(2)`
`=1/2(1-ln(2))`
`int_(pi/4)^(pi/2)cot^3(x)`
Let's evaluate the indefinite integral by rewriting the integrand as,
`intcot^3(x)=intcot(x)cot^2(x)dx`
Now use the identity:`cot^2(x)=csc^2(x)-1`
`=intcot(x)(csc^2(x)-1)dx`
`=int(cot(x)csc^2(x)-cot(x))dx`
`=intcot(x)csc^2(x)dx-intcot(x)dx`
Now let's evaluate `intcot(x)csc^2(x)dx` by integral substitution,
Let `u=cot(x)`
`=>du=-csc^2(x)dx`
`intcot(x)csc^2(x)dx=intu(-du)`
`=-intudu`
`=-u^2/2`
substitute back `u=cot(x)`
`=-1/2cot^2(x)`
Use the common integral `intcot(x)dx=ln|sin(x)|`
`:.intcot^3(x)dx=-1/2cot^2(x)-ln|sin(x)|+C` , C is a constant
Now let' evaluate the definite integral,
`int_(pi/4)^(pi/2)cot^3(x)dx=[-1/2cot^2(x)-ln|sin(x)|}_(pi/4)^(pi/2)`
`=[-1/2cot^2(pi/2)-ln|sin(pi/2)|]-[-1/2cot^2(pi/4)-ln|sin(pi/4)|]`
`=[-1/2*0-ln(1)]-[-1/2(1)^2-ln(1/sqrt(2))]`
`=[0]+1/2+ln(1/sqrt(2))`
`=1/2+ln(2^(-1/2))`
`=1/2-1/2ln(2)`
`=1/2(1-ln(2))`
No comments:
Post a Comment